Fast Entity Linking via Graph Embeddings Alberto Parravicini Rhicheek Patra Davide Bartolini Marco Santambrogio ORACLE 2019-06-30, GRADES-NDA

POLITECNICO MILANO 1863 NELAboratory

Entity Linking

Entity Linking (EL): connecting words of interest to unique identities (e.g. Wikipedia Page)

"The Indiana Pacers and Miami Heat [...] meet at Miami's American Airlines Arena"

en.wikipedia.org/wiki/Miami_Heat

.../wiki/American_Airlines_Arena

en.wikipedia.org/wiki/Indiana_Pacers en.wikipedia.org/wiki/Miami

Use Cases

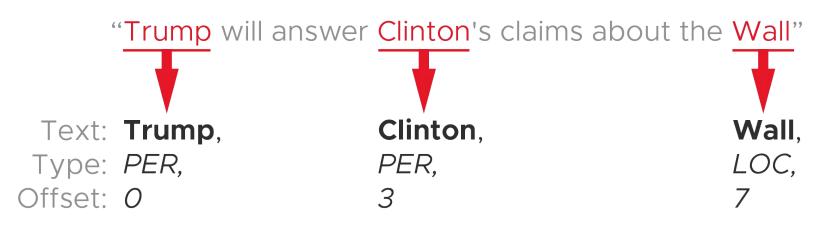
Component of applications that require high-level representations of text:

- 1. Search Engines, for semantic search
- 2. Recommender Systems, to retrieve documents similar to each other
- 3. Chat bots, to understand intents and entities

The EL Pipeline (1/2)

An EL system requires 2 steps:

- 1. Named Entity Recognition (NER): spot mentions (a.k.a. Named Entities)
 - High-accuracy in the state-of-the-art^[1]

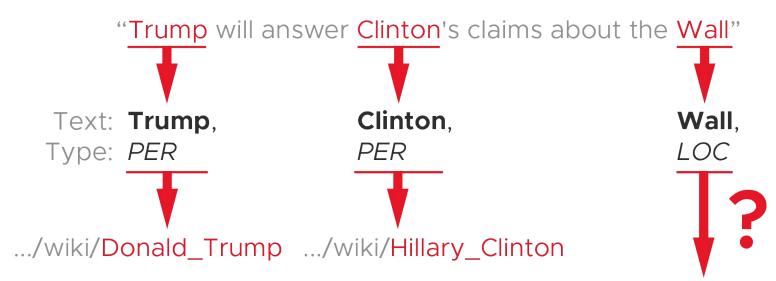


[1] Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging."

The EL Pipeline (2/2)

An EL system requires 2 steps:

2. Entity Linking: connect mentions to entities



5

The EL Pipeline (2/2)

An EL system requires 2 steps:

2. Entity Linking: connect mentions to entities

The EL Pipeline (2/2)

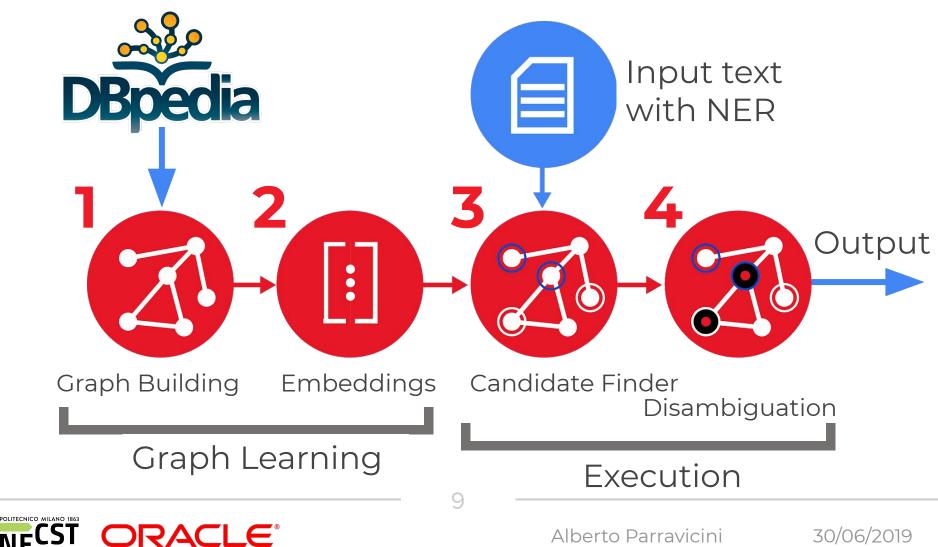
An EL system requires 2 steps:

2. Entity Linking: connect mentions to entities

Our contributions

- Novel unsupervised framework for EL
 - No dependency on NLP
- First EL algorithm to use graph embeddings
 - Accuracy similar to supervised SoA techniques
- Highly scalable and real-time execution time
 - <1 sec to process text with 30+ mentions</p>

Our EL Pipeline



Alberto Parravicini

Step 1/4

Graph Creation

We obtain a large graph from DBpedia

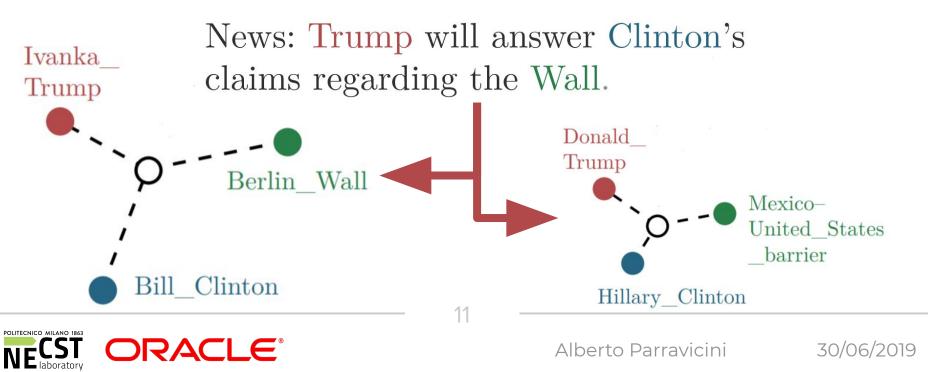
- All the information of Wikipedia
- NYC • Stored as triples 1946 New_York redirect redirects 12M entities The Trump Building birthDate NY partOf redirects 170M links Queens owner oirthPlace Trump,_Donald Donald_Trump redirects disambiguates child parent Trump grandFather disambiguates Ivanka_Trump Fred_Trump 10

Alberto Parravicini

New York City

Step 2/4 —— Embeddings Creation (1/2)

- Graph embeddings encode vertices as vectors
 - "Similar" vertices have "similar" embeddings
- Idea: entities with the same context should have low embedding distance



Step 2/4

Embeddings Creation (2/2)

• In our work, we use **DeepWalk**^[1]

- Like word2vec^[2], it leverages random walks (i.e. vertex sequences) to create embeddings
 - Embedding size 170, walk length 8
- DeepWalk uses only the graph topology
 - Simple baseline, we can use better algorithms and leverage graph features [1] Bryan Perozzi et al.2014. Deepwalk [2] Tomas Mikolov et al. 2013. Distribute

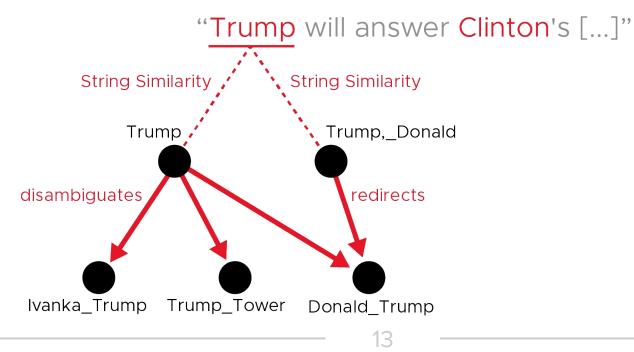
[1] Bryan Perozzi et al.2014. Deepwalk
[2] Tomas Mikolov et al. 2013. Distributed representations of words and phrases and their compositionality

Step 3/4

Candidate Finder

Idea: for each mention, select a few candidate vertices with index-based **string similarity**

 Solve ambiguity following redirect and disambiguation links

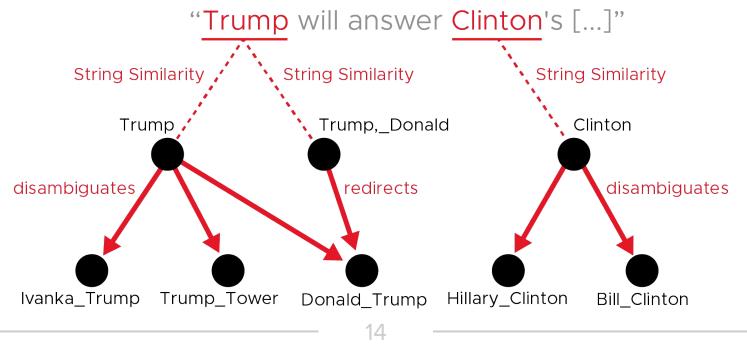


Step 3/4

Candidate Finder

Idea: for each mention, select a few candidate vertices with index-based **string similarity**

 Solve ambiguity following redirect and disambiguation links



Alberto Parravicini

Step 4/4

Disambiguation (1/3)

- We want to pick the "best" candidate for each mention
 - In a "good" solution, candidates are related to each other (e.g. *Donald Trump, Hillary Clinton*)
- Observation: a good tuple of candidates has embeddings close to each other Trump
- Evaluating all combinations is infeasible

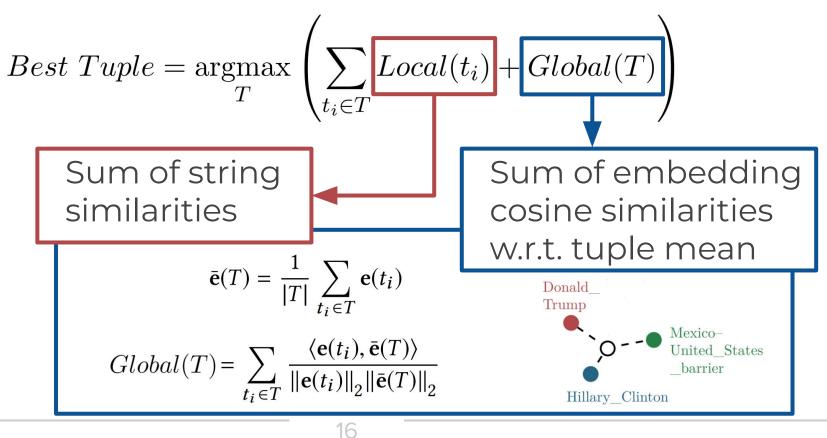
- Trump Mexico– United_Star _barrier Hillary_Clinton
- 10 mentions with 100 candidates → 100¹⁰

15

Step 4/4

Disambiguation (2/3)

• We use an heuristic state-space search algorithm to maximize:

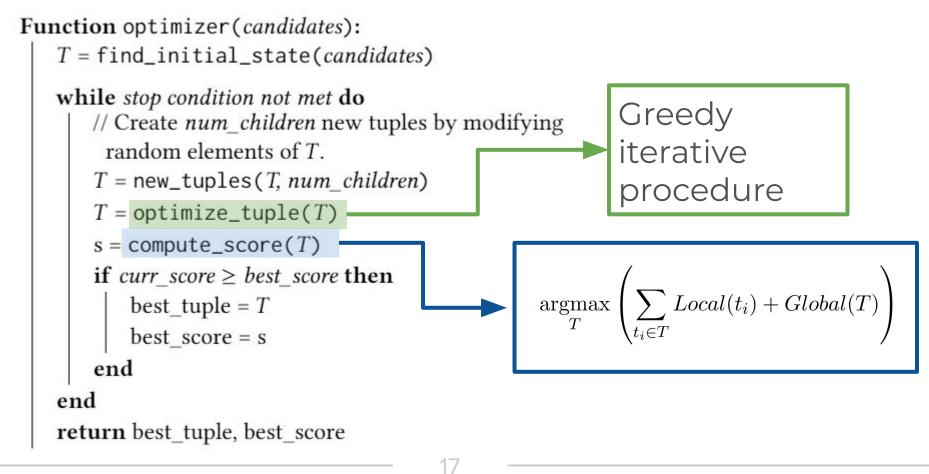


Alberto Parravicini

Step 4/4

Disambiguation (3/3)

• Iterative state-space heuristic



Results: accuracy

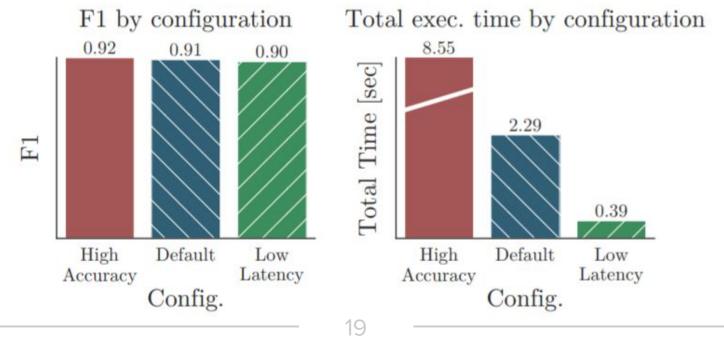
- We compared against 6 SoA EL algorithms, on 5 datasets
- Our Micro-averaged **F1** score is comparable with SoA supervised algorithms

Data Set	Ours	DoSeR	WK	AIDA	WAT	BB	SL
ACE2004	0.84	0.90	0.83	0.81	0.80	0.56	0.71
AQUAINT	0.86	0.84	0.86	0.53	0.77	0.65	0.71
MSNBC	0.92	0.91	0.85	0.78	0.78	0.60	0.51
N3-Reuters	0.82	0.85	0.70	0.60	0.64	0.53	0.58
N3-RSS-500	0.72	0.75	0.73	0.71	0.68	0.63	0.62

WK is Wikifier, BB is Babelfy, SL is Spotlight

Results: exec. time

- Different settings enable real-time EL, with minimal loss in accuracy
 - E.g. number of iterations, early stop



Conclusion & Future Work

• In short:

- First EL algorithm to use graph embeddings
- Accuracy similar to supervised SoA techniques
- Real-time execution time
- Future works:
 - Better graph embeddings algorithms (use vertex/edge features)
 - Improve disambiguation algorithm for even faster exec. time

20

Thank you! Fast Entity Linking via Graph Embeddings

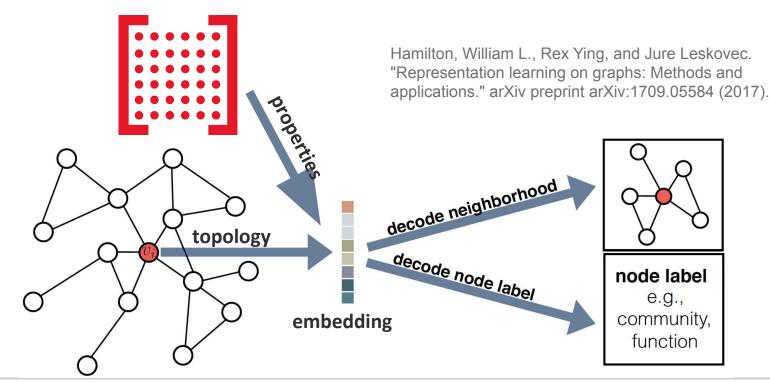
- Novel unsupervised framework for EL
- First EL algorithm to use graph embeddings
 - Accuracy similar to supervised SoA techniques
- Real-time execution time

Alberto Parravicini, alberto.parravicini@polimi.it Rhicheek Patra Davide Bartolini Marco Santambrogio 2019-06-30, GRADES-NDA

Step 2/4

Embeddings

- Turn topology and properties of each vertex into a vector
- "Similar" vertices have "similar" embeddings



Alberto Parravicini

Step 1/4

Graph Creation

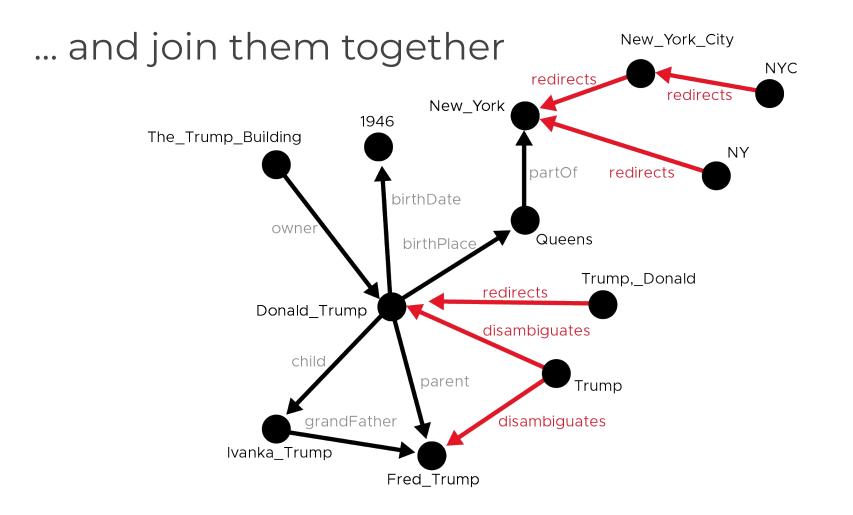
We obtain a large graph from DBpedia

- All the information of Wikipedia, stored as triples
- 12M entities, 170M links

23

Step 1/4

Graph Creation



Step 3/4

Candidates Finder

Idea: for each mention, select a small number of candidate vertices with **string similarity**

- We use a simple index-based string search
- Fuzzy matching with 2-grams and 3-grams
- This provide a simple baseline (60-70% accuracy)

Results: exec. time of single steps

• Execution time is well divided between Candidate Finder and Disambiguation

Time distribution - Fast Configuration

